3.982 \(\int \sec ^6(c+d x) (a+a \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx\)

Optimal. Leaf size=104 \[ \frac {a^2 (3 A-2 B) \tan ^3(c+d x)}{15 d}+\frac {a^2 (3 A-2 B) \tan (c+d x)}{5 d}+\frac {a^2 (3 A-2 B) \sec ^3(c+d x)}{15 d}+\frac {(A+B) \sec ^5(c+d x) (a \sin (c+d x)+a)^2}{5 d} \]

[Out]

1/15*a^2*(3*A-2*B)*sec(d*x+c)^3/d+1/5*(A+B)*sec(d*x+c)^5*(a+a*sin(d*x+c))^2/d+1/5*a^2*(3*A-2*B)*tan(d*x+c)/d+1
/15*a^2*(3*A-2*B)*tan(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {2855, 2669, 3767} \[ \frac {a^2 (3 A-2 B) \tan ^3(c+d x)}{15 d}+\frac {a^2 (3 A-2 B) \tan (c+d x)}{5 d}+\frac {a^2 (3 A-2 B) \sec ^3(c+d x)}{15 d}+\frac {(A+B) \sec ^5(c+d x) (a \sin (c+d x)+a)^2}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^6*(a + a*Sin[c + d*x])^2*(A + B*Sin[c + d*x]),x]

[Out]

(a^2*(3*A - 2*B)*Sec[c + d*x]^3)/(15*d) + ((A + B)*Sec[c + d*x]^5*(a + a*Sin[c + d*x])^2)/(5*d) + (a^2*(3*A -
2*B)*Tan[c + d*x])/(5*d) + (a^2*(3*A - 2*B)*Tan[c + d*x]^3)/(15*d)

Rule 2669

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b*(g*Cos[
e + f*x])^(p + 1))/(f*g*(p + 1)), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x]
&& (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rule 2855

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> -Simp[((b*c + a*d)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m)/(a*f*g*(p +
1)), x] + Dist[(b*(a*d*m + b*c*(m + p + 1)))/(a*g^2*(p + 1)), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x]
)^(m - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, -1] && LtQ[p, -1]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rubi steps

\begin {align*} \int \sec ^6(c+d x) (a+a \sin (c+d x))^2 (A+B \sin (c+d x)) \, dx &=\frac {(A+B) \sec ^5(c+d x) (a+a \sin (c+d x))^2}{5 d}+\frac {1}{5} (a (3 A-2 B)) \int \sec ^4(c+d x) (a+a \sin (c+d x)) \, dx\\ &=\frac {a^2 (3 A-2 B) \sec ^3(c+d x)}{15 d}+\frac {(A+B) \sec ^5(c+d x) (a+a \sin (c+d x))^2}{5 d}+\frac {1}{5} \left (a^2 (3 A-2 B)\right ) \int \sec ^4(c+d x) \, dx\\ &=\frac {a^2 (3 A-2 B) \sec ^3(c+d x)}{15 d}+\frac {(A+B) \sec ^5(c+d x) (a+a \sin (c+d x))^2}{5 d}-\frac {\left (a^2 (3 A-2 B)\right ) \operatorname {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{5 d}\\ &=\frac {a^2 (3 A-2 B) \sec ^3(c+d x)}{15 d}+\frac {(A+B) \sec ^5(c+d x) (a+a \sin (c+d x))^2}{5 d}+\frac {a^2 (3 A-2 B) \tan (c+d x)}{5 d}+\frac {a^2 (3 A-2 B) \tan ^3(c+d x)}{15 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 178, normalized size = 1.71 \[ \frac {2 a^2 A \tan ^5(c+d x)}{5 d}+\frac {2 a^2 A \sec ^5(c+d x)}{5 d}+\frac {a^2 A \tan (c+d x) \sec ^4(c+d x)}{d}-\frac {a^2 A \tan ^3(c+d x) \sec ^2(c+d x)}{d}-\frac {4 a^2 B \tan ^5(c+d x)}{15 d}+\frac {a^2 B \sec ^5(c+d x)}{15 d}+\frac {a^2 B \tan ^2(c+d x) \sec ^3(c+d x)}{3 d}+\frac {2 a^2 B \tan ^3(c+d x) \sec ^2(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^6*(a + a*Sin[c + d*x])^2*(A + B*Sin[c + d*x]),x]

[Out]

(2*a^2*A*Sec[c + d*x]^5)/(5*d) + (a^2*B*Sec[c + d*x]^5)/(15*d) + (a^2*A*Sec[c + d*x]^4*Tan[c + d*x])/d + (a^2*
B*Sec[c + d*x]^3*Tan[c + d*x]^2)/(3*d) - (a^2*A*Sec[c + d*x]^2*Tan[c + d*x]^3)/d + (2*a^2*B*Sec[c + d*x]^2*Tan
[c + d*x]^3)/(3*d) + (2*a^2*A*Tan[c + d*x]^5)/(5*d) - (4*a^2*B*Tan[c + d*x]^5)/(15*d)

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 113, normalized size = 1.09 \[ -\frac {4 \, {\left (3 \, A - 2 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} - 3 \, {\left (2 \, A - 3 \, B\right )} a^{2} - {\left (2 \, {\left (3 \, A - 2 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} - 3 \, {\left (3 \, A - 2 \, B\right )} a^{2}\right )} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right )^{3} + 2 \, d \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 2 \, d \cos \left (d x + c\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6*(a+a*sin(d*x+c))^2*(A+B*sin(d*x+c)),x, algorithm="fricas")

[Out]

-1/15*(4*(3*A - 2*B)*a^2*cos(d*x + c)^2 - 3*(2*A - 3*B)*a^2 - (2*(3*A - 2*B)*a^2*cos(d*x + c)^2 - 3*(3*A - 2*B
)*a^2)*sin(d*x + c))/(d*cos(d*x + c)^3 + 2*d*cos(d*x + c)*sin(d*x + c) - 2*d*cos(d*x + c))

________________________________________________________________________________________

giac [A]  time = 0.21, size = 192, normalized size = 1.85 \[ -\frac {\frac {15 \, {\left (A a^{2} - B a^{2}\right )}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1} + \frac {105 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 15 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 270 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 30 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 360 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 40 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 210 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 50 \, B a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 63 \, A a^{2} - 7 \, B a^{2}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{5}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6*(a+a*sin(d*x+c))^2*(A+B*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/60*(15*(A*a^2 - B*a^2)/(tan(1/2*d*x + 1/2*c) + 1) + (105*A*a^2*tan(1/2*d*x + 1/2*c)^4 + 15*B*a^2*tan(1/2*d*
x + 1/2*c)^4 - 270*A*a^2*tan(1/2*d*x + 1/2*c)^3 + 30*B*a^2*tan(1/2*d*x + 1/2*c)^3 + 360*A*a^2*tan(1/2*d*x + 1/
2*c)^2 - 40*B*a^2*tan(1/2*d*x + 1/2*c)^2 - 210*A*a^2*tan(1/2*d*x + 1/2*c) + 50*B*a^2*tan(1/2*d*x + 1/2*c) + 63
*A*a^2 - 7*B*a^2)/(tan(1/2*d*x + 1/2*c) - 1)^5)/d

________________________________________________________________________________________

maple [B]  time = 0.64, size = 231, normalized size = 2.22 \[ \frac {a^{2} A \left (\frac {\sin ^{3}\left (d x +c \right )}{5 \cos \left (d x +c \right )^{5}}+\frac {2 \left (\sin ^{3}\left (d x +c \right )\right )}{15 \cos \left (d x +c \right )^{3}}\right )+B \,a^{2} \left (\frac {\sin ^{4}\left (d x +c \right )}{5 \cos \left (d x +c \right )^{5}}+\frac {\sin ^{4}\left (d x +c \right )}{15 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{4}\left (d x +c \right )}{15 \cos \left (d x +c \right )}-\frac {\left (2+\sin ^{2}\left (d x +c \right )\right ) \cos \left (d x +c \right )}{15}\right )+\frac {2 a^{2} A}{5 \cos \left (d x +c \right )^{5}}+2 B \,a^{2} \left (\frac {\sin ^{3}\left (d x +c \right )}{5 \cos \left (d x +c \right )^{5}}+\frac {2 \left (\sin ^{3}\left (d x +c \right )\right )}{15 \cos \left (d x +c \right )^{3}}\right )-a^{2} A \left (-\frac {8}{15}-\frac {\left (\sec ^{4}\left (d x +c \right )\right )}{5}-\frac {4 \left (\sec ^{2}\left (d x +c \right )\right )}{15}\right ) \tan \left (d x +c \right )+\frac {B \,a^{2}}{5 \cos \left (d x +c \right )^{5}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^6*(a+a*sin(d*x+c))^2*(A+B*sin(d*x+c)),x)

[Out]

1/d*(a^2*A*(1/5*sin(d*x+c)^3/cos(d*x+c)^5+2/15*sin(d*x+c)^3/cos(d*x+c)^3)+B*a^2*(1/5*sin(d*x+c)^4/cos(d*x+c)^5
+1/15*sin(d*x+c)^4/cos(d*x+c)^3-1/15*sin(d*x+c)^4/cos(d*x+c)-1/15*(2+sin(d*x+c)^2)*cos(d*x+c))+2/5*a^2*A/cos(d
*x+c)^5+2*B*a^2*(1/5*sin(d*x+c)^3/cos(d*x+c)^5+2/15*sin(d*x+c)^3/cos(d*x+c)^3)-a^2*A*(-8/15-1/5*sec(d*x+c)^4-4
/15*sec(d*x+c)^2)*tan(d*x+c)+1/5*B*a^2/cos(d*x+c)^5)

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 147, normalized size = 1.41 \[ \frac {{\left (3 \, \tan \left (d x + c\right )^{5} + 10 \, \tan \left (d x + c\right )^{3} + 15 \, \tan \left (d x + c\right )\right )} A a^{2} + {\left (3 \, \tan \left (d x + c\right )^{5} + 5 \, \tan \left (d x + c\right )^{3}\right )} A a^{2} + 2 \, {\left (3 \, \tan \left (d x + c\right )^{5} + 5 \, \tan \left (d x + c\right )^{3}\right )} B a^{2} - \frac {{\left (5 \, \cos \left (d x + c\right )^{2} - 3\right )} B a^{2}}{\cos \left (d x + c\right )^{5}} + \frac {6 \, A a^{2}}{\cos \left (d x + c\right )^{5}} + \frac {3 \, B a^{2}}{\cos \left (d x + c\right )^{5}}}{15 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^6*(a+a*sin(d*x+c))^2*(A+B*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/15*((3*tan(d*x + c)^5 + 10*tan(d*x + c)^3 + 15*tan(d*x + c))*A*a^2 + (3*tan(d*x + c)^5 + 5*tan(d*x + c)^3)*A
*a^2 + 2*(3*tan(d*x + c)^5 + 5*tan(d*x + c)^3)*B*a^2 - (5*cos(d*x + c)^2 - 3)*B*a^2/cos(d*x + c)^5 + 6*A*a^2/c
os(d*x + c)^5 + 3*B*a^2/cos(d*x + c)^5)/d

________________________________________________________________________________________

mupad [B]  time = 9.36, size = 175, normalized size = 1.68 \[ \frac {2\,a^2\,\left (\frac {5\,B\,\sin \left (c+d\,x\right )}{2}-\frac {15\,A\,\cos \left (c+d\,x\right )}{4}-\frac {5\,B\,\cos \left (c+d\,x\right )}{8}-\frac {15\,A\,\sin \left (c+d\,x\right )}{4}-\frac {5\,B}{2}-3\,A\,\cos \left (2\,c+2\,d\,x\right )+\frac {3\,A\,\cos \left (3\,c+3\,d\,x\right )}{4}+2\,B\,\cos \left (2\,c+2\,d\,x\right )+\frac {B\,\cos \left (3\,c+3\,d\,x\right )}{8}+3\,A\,\sin \left (2\,c+2\,d\,x\right )+\frac {3\,A\,\sin \left (3\,c+3\,d\,x\right )}{4}+\frac {B\,\sin \left (2\,c+2\,d\,x\right )}{2}-\frac {B\,\sin \left (3\,c+3\,d\,x\right )}{2}\right )}{15\,d\,\left (\frac {\cos \left (3\,c+3\,d\,x\right )}{4}-\frac {5\,\cos \left (c+d\,x\right )}{4}+\sin \left (2\,c+2\,d\,x\right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*sin(c + d*x))*(a + a*sin(c + d*x))^2)/cos(c + d*x)^6,x)

[Out]

(2*a^2*((5*B*sin(c + d*x))/2 - (15*A*cos(c + d*x))/4 - (5*B*cos(c + d*x))/8 - (15*A*sin(c + d*x))/4 - (5*B)/2
- 3*A*cos(2*c + 2*d*x) + (3*A*cos(3*c + 3*d*x))/4 + 2*B*cos(2*c + 2*d*x) + (B*cos(3*c + 3*d*x))/8 + 3*A*sin(2*
c + 2*d*x) + (3*A*sin(3*c + 3*d*x))/4 + (B*sin(2*c + 2*d*x))/2 - (B*sin(3*c + 3*d*x))/2))/(15*d*(cos(3*c + 3*d
*x)/4 - (5*cos(c + d*x))/4 + sin(2*c + 2*d*x)))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**6*(a+a*sin(d*x+c))**2*(A+B*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________